
Optimal Map Layer Ordering
LayerOrder.mbx Version 1.0, 19 July 2002

Background

When a set of MapInfo tables are opened with the Current Mapper option, MapInfo will create a map
with layers ordered points, lines, regions with text possibly placed before regions. It seems this rule
applies to layers with mixed content as well. A layer with points and regions will be grouped with
points. A layer with regions and lines will be grouped with lines.

Similarly when layers are added to an existing mapper, the above rules apply, except that a text only
layer is added above points.

This default layer ordering provides a good start to an optimal display order, but does not account for
other properties of the table or of the style override which impact the display order.

Definition

For the purposes of this application, the optimal display order is defined as the order which will
minimise the number of objects that are hidden beneath others.

As a simple example, a parks or a lakes layer with solid fill brush style should be positioned on top of a
states layer. A suburb boundary layer with no fill or transparent brush style would be positioned on top
of a layer with a solid fill style.

The optimal display order is not necessarily the optimal order for cartographic output.

Layers may be ordered for other purposes, such as drill-down or “point object within boundary” type of
analysis. This might typically be the reverse of the display order.

Because of the sampling method (see next section) , data variability (especially mixed layer object type
content) and other criteria that a user may apply in setting layer order, the optimal display order is of
course not necessarily the best for particular user circumstances. It may well be closer than the default
MapInfo order though.

Method

LayerOrder builds a classification table in a form where a sorted SQL select can be used to build the
layer order. The sort order is Object Type, Override Style, Object Style, Contiguous Region Parameter,
Average Object Size Parameter. The table name and table path are also stored to provide a reliable
index for locating a specific table details.

Keywords are used for each entry under these column headings with a prepended sort character. For
example, when sorting by the column that classifies a region table as to whether its objects are
contiguous or non-contiguous, the keywords are bCONTIG and aNON-CONTIG respectively. This
means that sparse (non-contiguous) region objects will be sorted ahead of contiguous region objects for
this particular sort criterion.

The build process uses a sampling method to extract a few hundred records from each table. Therefore
it may miss some object types, but provides performance benefits for large tables where a
comprehensive group process is considerably slower. An option may be provided in a future revision to
perform the comprehensive process.

Note: From a philosophical standpoint, the table classification information is probably better stored as
metadata than the lmTableClass table. The single reason for not doing this is the read-only table. Until
MapInfo has a central writable repository of table metadata, only the table publisher can write this
information.

Classifying Tables

LayerOrder > Build Table Class for Open Tables

This function will take all open tables and add them to the lmTableClass catalogue table. The attributes
that are computed for each table are:

Classification Column Name Description
Object type ObjectType Value of aTEXT, bPOINT, cLINE, dREGION or

combination
Override style OrideStyle Blank for table classification. Used in map layer

reordering to store the actual override style for particular
layer objects. This will be sorted ahead of the native
object style for the table. The values and meaning are the
same as Object Style.

Object Style ObjStyle The style is actually the portion of style relating to
visibility:
aNOFILL, bTRANSPARENT, cFILL
For lines, the style is:
aINVIS, bpenwidth
So for regions, a transparent fill style will appear before a
solid fill style. For lines, an invisible line style will
appear before a style of pen width 5 units. [Nb: Some
applications may require thicker line styles to appear
above thinner line styles – this may be provided as a
future option].

Contiguous Region
Parameter

GeomContig For regions only:
aNON-CONTIG, bCONTIGUOUS as described
previously

 Average Object Size
Parameter

For regions: object area in sq km.
For other objects: object count
This attribute is most significant for regions where all
other things being equal, smaller size objects should
appear above larger size objects. The best example is the
single blue rectangle that often sits underneath everything
else to provide a water background. This parameter
forces this layer to be below a country layer.
For other object types, a more subjective approach where
a smaller object count is taken to be more significant
(higher in the order) than a larger object count.

If a table already exists in lmTableClass, its attributes will be updated.

Mapping Some Tables

LayerOrder > Map Selected Tables

If records in the lmTableClass or lmLayerOrder are selected, these will be mapped in a single mapper
in the optimal display order.

Reordering Layers in an existing Mapper

LayerOrder > Reorder Layers in Current Map

This will attempt to reorder layers based on information previously built. If a table hasn’t been
classified, it will be reported and its position will remain unchanged.

Build Usage Suggestion

The build process doesn’t take long (2 secs for the average size table), but it is convenient to build the
catalogue for all your current tables in one step. To achieve this:
1. Use Windows Explorer, file find to locate all TABs on your MapInfo data drives, in turn.
2. Select all of the files and drag into a MapInfo Professional session.
3. Tools > LayerOrder > Build Table Class for Open Tables

Note that query tables will be classified according to their base table path.

System Issues

LayerOrder.mbx has been compiled for MapInfo 5.5 or later. It will function on earlier versions if the
MBX is patched appropriately.

Provision of Source Code

This tool was originally developed as a part of the LayMan (v2) (www.acenet.com.au/~pwaight)
application to provide a map and layer reorder facility. Please feel free to incorporate this tool into your
applications.

Source coded is provided to encourage those with sufficient interest to extend the capabilities of the
program based on additional classification information. I request that source code changes be emailed
to me at pwaight@acenet.com.au to allow incorporation with future versions.

Raster tables should be capable of being handled using the existing classifications but is not in the
current version. A function to build a single table might be useful. See the source code for other
documented limitations.

End Of Document

